Q5: For the network of figure below.
a) Find the current \mathbf{I}_{1}.
b) Find the voltage $\mathbf{V}_{\mathbf{1}}$.
c) Find the average power
delivered to the network.
(10 Marks)

Q6: A) Prove that $\boldsymbol{I}_{r m s}=\boldsymbol{I} \sqrt{\frac{3}{2}}$ if $i=(I+I \sin \theta)$, assuming $\theta=(0-2 \pi)$.
(5 Marks)
B) Find the equivalent impedance of the circuit in figure below.

Q7: A series resonant circuit with an input voltage of $5 \mathrm{~V} \angle 0^{\circ}$, peak current of 0.5 A at resonance, bandwidth of 120 Hz and resonant frequency of 8400 Hz . Find the value of R, L and C and the cutoff frequencies.
(10 Marks)

Q8: For the magnetic circuit shown in figure below find the current \mathbf{I} in the coil needed to produce a flux of 0.45 mWb in the air gap. The silicon iron magnetic circuit has a uniform cross sectional area of $3 \mathrm{~cm}^{2}$ (assume $\mu_{r s}=500$).

University of Diyala.

- ollege of Engineering.

Electrical Power and Machines
Department.

Q1: Using mesh analysis, find $\boldsymbol{i}_{\boldsymbol{o}}$ in the circuit of figure below.

Q2: Using Thevenin's theorem, find v_{o} in the circuit of figure below.

Q3: Using superposition principle find v_{o} in the circuit of figure below.

Q4: Determine the current \mathbf{I} in the network of figure below.

Fig. - 2 -

Q4	Solve the following partial differential equation: $3 \frac{\partial u}{\partial x}+2 \frac{\partial u}{\partial y}=0 \quad, u(x, 0)=4 e^{-x}$	12.5\%
Q5	Apply the Laplace transforms to solve the following partial differential equation: $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}$ $u(x, 0)=3 \sin 2 \pi, u(0, t)=0, u(1,0)=0$, where $0 \leq x \leq 1, u$ is bounded .	12.5\%
Q6	Show that $\int_{x}^{1} p_{n}(x) d x=\frac{1}{2 n+1}\left[p_{n-2}(x)-p_{n+1}(x)\right]$	12.5\%
Q7	Obtain the root of $\mathbf{x}^{3}+\mathbf{x}-1=0$ by fixed point method given that the root lies near 1 .	12.5\%
Q8	Solve the following differential equation by using improved Euler's method. $\frac{d y}{d x}=\mathbf{x}^{2}+\mathrm{y}$ for $\mathrm{x}=0.02$ by taking $\mathrm{h}=0.01$, given that $\mathrm{y}=1$ at $\mathrm{x}=0$	12.5\%
Q9	Evaluate $\int_{0}^{2 \pi} \frac{d \theta}{5+3 \sin \theta}$	12.5\%
Q10	Show that $\int_{0}^{2 \pi} \frac{\cos 3 \theta}{5-4 \cos \theta} d \theta=\frac{\pi}{12}$	12.5\%

Class:3ed stage Subject: engineering analyses Year: 2011-2012
Time: 3 hour

Note:-Answer eight questions only

Q1	A-Find the Fourier transform of the spectrum represented in figure (1). B-Obtain the Fourier transform of the single sided exponential pulse $e^{-a t} \mathbf{u}(t)$.	12.5\%
Q2	A-Find the Z transform by residue theorem for $F(t)=e^{a t} \cos w t$ B- by using power series method evaluate $z^{-1}\left[\frac{z^{2}}{z^{2}+3 z+2}\right]$ C-Determine $\quad z^{-1}\left[\frac{\left(1-e^{-a}\right) z}{(z-1)\left(z-e^{-a}\right)}\right]$	12.5\%
Q3	A-find the Laplace-transform of the rectangular wave shown in figure (2). B-Determine the $\mathbb{f}(t)$ such that $\begin{aligned} f(t) & =0 & & 0 \leq t \leq 1 \\ & =0.5 & & 1 \leq t \leq 2 \\ & =1 & & 2 \leq t \leq 3 \\ & =0.5 & & 3 \leq t \leq 4 \end{aligned}$	12.5\%

Q4/ (a) Find the form-factor of the wave form given in figure shown.

(b) For the figure shown, write the mesh equations and simplify it without finding the results.

Q5/ In a series-parallel circuit shown in figure, calculate : (a) current I_{A}, I_{B} and I_{C}; (b) the power factor for each branch and the total power factor for the whole circuit.

Q6/ A current of 5 A flows through a non-inductive resistance in series with a choking coil when supplied at $250-\mathrm{V}, 50-\mathrm{Hz}$.
If the voltage across the resistance is 125 V and across the coil 200 V , calculate (a) impedance, reactance and resistance of the coil (b) the power absorbed by the coil and (c) the total power. Draw the vector diagram.

Examiner: Asst., Lecturer Wisam \mathcal{N}. AL-Obaidi

Note: Answer five questions only.

Q1/ Use the superposition theorem to find i.

**
Q2/ Find the maximum power transferred to resistor R in the circuit shown.

**

Q3/ Using nodal analysis, find v_{0} and i_{0} in the circuit shown.

Figure (1).

Figure (2).

	Diyala University College of Eng. Civil Eng. Dep.	
$1^{\text {st }}$ Class	$2^{\text {nd }}$ Attempt (2011-2012)	time $: 3 \mathrm{hrs}$

Note :- Answer four Questions only (12.5 mark for each question)
Q1:
Find the total resistance between points (a, b) in the circuit shown in figure (1).

Q2:

find the current passing through the resistor (10 ohms) using Thevenin's theorem in the circuit shown in figure (2) .

Q3:

Repeat Q2 using Norton's theorem.

Q4 :
Three impedances $\mathrm{Z} 1=(3+\mathrm{j} 4)$ ohms, $\mathrm{Z2}=(3-\mathrm{j} 4)$ ohms, $\mathrm{Z3}=(6+\mathrm{j} 8)$ ohms are connected in parallel to a voltage source ($\mathrm{V}=\mathbf{2 0} \sin 1000 \mathrm{t}$). Find all branch currents, total current , total impedance and draw the impedance diagram .

Q5:
If a voltage source $V=100 \sin \left(200 t+40^{\circ}\right)$ volt, is supplied with an electrical circuit, and the generated current is $i=10 \sin (200 t-5)$ Ampers.
Find the impedance of this circuit and the components of this impedance

Attached Figures and Notes

Figure (3)

Figure (5)

University of Diyala College of Engineering Dep. of Computer \& Software Engineering Final Exam/2 ${ }^{\text {nd }}$ Attempt

Class: $1^{\text {st }}$ stage
Subject: Basics of Electrical Engineering
Year: 2011-2012
Time: 3 hour
Date: 3-9-2012

Q1	Explain Five of the Following: (1) Power. (2) Ohm's Law. (3) Open Circuit. (4) Thevenin's theorem. (5) The cycle in AC waveform. (6) Peak to Peak Value.	$\stackrel{10}{10}$
Q2	For the circuit shown in Figure (1), determine: 1. Compute I. 2. Find $\mathrm{I} 1, \mathrm{I} 2$ and I 3 . 3. Verify Kirchhoff's law by showing that $I=\|1+\|2+\| 3$. 4. Find the Total Impendence of the circuit.	$\begin{gathered} 10 \\ \text { Marks } \end{gathered}$
Q3	Find the Current I in the Circuit Shown in Figure (2).	$\begin{gathered} 10 \\ \text { Marks } \end{gathered}$
Q4	For the network shown in Figure (3), find: 1. The currents IT, I1, I3 and I4. 2. Calculate Va and Vbc.	$\begin{gathered} 10 \\ \text { Marks } \end{gathered}$
Q5	For the network shown in Figure (4): determine the voltage $\mathrm{V} 1, \mathrm{~V} 2$ and the current I .	$\begin{gathered} 10 \\ \text { Marks } \end{gathered}$
Q6	For the circuit shown in Figure (5): 1. Write the nodal equations and solve for nodal voltages. 2. Determine the magnitude and polarity of the voltage across each resistor.	$\begin{gathered} 10 \\ \text { Marks } \end{gathered}$

Good Luck

Name: Dr. Saad A. Salman

Name:...MSc, Zeyad Assi Obaid
-
-

University of Diyala
College of Engineering
Dep. Of mechanical engineering
Final Exam/ $2^{\text {nd }}$ Attempt

Class: $1^{\text {st }}$ stage
Subject: Electrical. Fun
Year: 2011-2012
Time: 3 hour

Note:-Answer five questions only

Q1	The resistivity of a ferric-chromium-aluminum alloy shown in FIG(1) is $51 \times 10^{-8} \Omega-$ m. A sheet of the material is 15 cm long, 6 cm wide and 0.014 cm thick. Determine resistance between (A) Opposite ends, and (B) Opposite sides.	20%
Q2	Calculate the equivalent resistance R_{ab} in the circuit in FIG (2).	20%
Q3	Use superposition theorem to find the current I through the 6Ω resistor in FIG (3).	20%
Q4	For the bridge network in FIG (4), find i_{0} by using mesh analysis.	20%
Q5	Find the Thévenin equivalent circuit for the network in the shaded area in FIG (5).	20%
Q6	Use nodal analysis to find V_{x} in the circuit shown in the FIG (6).	20%

Good Luck
Head of Dep.: \qquad
Name: Raid Salim Hamood"

Lecture:
Name: Omar Ahmed Raheem

Attached Figures and Notes

Q4
$\stackrel{+}{2}$

University of Diyala College of Engincering Dep. Of Communication
Final Exam/2 $2^{\text {st }}$ Attempt

Class: $1^{\text {st }}$ stage
Subject: Electrical . Fun
Year: 2011-2012
Time: 3 hour

Note:- Answer five questions only

Q1	$\mathrm{A} /$: Find the total resistance (R_{ab}) of the network of Fig.($1-\mathrm{A}$). B $/$: Find v_{o} and i_{o}, in the circuit of Fig. (1-B)	20\%
Q2	For the circuit shown in Fig.(2), find the current in the (3Ω) resistor using:- 1- Loop current method. 2- Nodal voltage method.	20\%
Q3	Find the load impedance in Fig. (3) for maximum power transfer to the load, and find the maximum power.	20\%
Q4	For the circuit shown in Fig.(4), find the current in the (4Ω) resistor using:- 1- Thevenin's theorem. 2- Norton's theorem.	20\%
Q5	A $/$:For the network of Fig.(5-A), determine:- $\quad Z_{T}, I_{T}, V_{R}, P$, p.f $B /$:- Calculate the magnetic flux for the magnetic circuit shown in fig (5-B). If the current $I=\mathbf{5 A}$, $\mathrm{N}=\mathbf{6 0} \mathrm{t}, \mathrm{A}=\mathbf{2} \times 10^{-4} \mathrm{~m}^{2}, \quad \ell_{\text {abcd }}=0.3 \mathrm{~m}$ and $\mu_{\mathrm{r}}=\mathbf{3 0 3}$ for the cast iron.	20%
Q6	A /: For a series (R-L-C) circuit, the inductor is variable. The source voltage is ($\sqrt{\mathbf{2}} \mathbf{2 0 0} \boldsymbol{\operatorname { s i n }} \mathbf{1 0 0} \boldsymbol{\pi t}$) volt. Maximum current obtained by varying the inductance is $(0.314 \mathrm{~A})$, and the voltage across the capacitor is $(300 \mathrm{~V})$. find the circuit elements ($\mathrm{R}-\mathrm{L}$ and C). B I: A coil having an inductance of $(50 \mathrm{mH})$ and a resistance of (10Ω) is connected in series with a $(25 \mu \mathrm{~F})$ capacitor across a (200 V) ac supply. Calculate :- 1- Resonance frequency. 2- Current flowing at resonance. 3- The value of \mathbf{Q}_{0} using different expressions.	20\%

Good Luck

Head of Dep.

Name: Lecture. Saib. T. Alwan

Lecturer:
Name: Ass. Lecture. Ahmed. S. Abdulla

